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We apply the piecewise constant level set method to a class of eigenvalue related two-
phase shape optimization problems. Based on the augmented Lagrangian method and
the Lagrange multiplier approach, we propose three effective variational methods for the
constrained optimization problem. The corresponding gradient-type algorithms are
detailed. The first Uzawa-type algorithm having applied to shape optimization in the liter-
ature is proven to be effective for our model, but it lacks stability and accuracy in satisfying
the geometry constraint during the iteration. The two other novel algorithms we propose
can overcome this limitation and satisfy the geometry constraint very accurately at each
iteration. Moreover, they are both highly initial independent and more robust than the first
algorithm. Without penalty parameters, the last projection Lagrangian algorithm has less
severe restriction on the time step than the first two algorithms. Numerical results for var-
ious instances are presented and compared with those obtained by level set methods. The
comparisons show effectiveness, efficiency and robustness of our methods. We expect our
promising algorithms to be applied to other shape optimization and multiphase problems.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Optimal shape design is very important and challenging in science and engineering. The typical problem is to find the
optimal shape that minimizes or maximizes an objective functional satisfying certain PDE and geometry constraints. The
essential difficulty for solving shape optimization problems is that the topology of the optimal shape is unknown a priori.
One therefore needs to find a mechanism to represent a shape and follow its evolution. Moreover, the changing topology
should be handled automatically during the evolution.

One type of such problems arises from structural vibration control and has many engineering design applications [5,42],
such as the band structure optimization of photonic crystals [12,16,17]. As a model problem, we consider an acoustic drum
head with a fixed bounded domain X � R2 and variable density qðxÞ. The resonant frequencies of the drum satisfy the fol-
lowing eigenvalue problem:
�DuðxÞ ¼ kqðxÞuðxÞ in X;

uðxÞ ¼ 0 on @X:

�
ð1Þ
Let S � X be an unknown domain. Suppose that the density qðxÞ is a piecewise constant function satisfying
. All rights reserved.

hu), qbwu@zju.edu.cn (Q. Wu), xxliu198431@126.com (C. Liu).

http://dx.doi.org/10.1016/j.jcp.2010.03.026
mailto:shengfengzhu@zju.edu.cn
mailto:qbwu@zju.edu.cn
mailto:xxliu198431@126.com
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


S. Zhu et al. / Journal of Computational Physics 229 (2010) 5062–5089 5063
qðxÞ ¼
q1; if x 2 X n S;
q2; if x 2 S:

�
ð2Þ
The mathematical problem we investigate here is to find an optimal distributed parameter qðxÞ that solves the following
constrained optimization problem:
min k1 or max k1 or max ðkmþ1 � kmÞ; m ¼ 1;2;3;4; ð3Þ
subject to
kSk ¼ K; ð4Þ
where k � k denotes the area of a domain and K is some prescribed number.
Osher and Santosa [37] firstly solved the above model problem elegantly by the level set method (LSM). They proposed an

effective algorithm by combining the variational LSM [59] and the projection gradient method [43]. They used the Lagrange
multiplier technique to convert the constrained optimization problem to an unconstrained one. At each iteration, the La-
grange multiplier was solved using a projection approach based on the linearization of the constraint. When an iteration
has violated the constraint by a prescribed tolerance, they found an optimal Lagrange multiplier using Newton’s method.

The LSM originally proposed by Osher and Sethian [38] is a versatile tool when dealing with problems required tracing
interfaces separating a domain into subregions. The interface is represented implicitly by the zero level set of a Lipschitz con-
tinuous level set function (LSF). In the conventional LSM, the Hamilton–Jacobi equation for the LSF is solved to evolve the
interface by using a capturing Eulerian approach. Upwind schemes, higher order essentially non-oscillatory (ENO) [39]
and weighted ENO (WENO) [25] schemes can be used to solve this equation. During the evolution, often regularity is im-
posed on the LSF by requiring it to be a signed distance function. The so-called re-initialization process should be performed
periodically. There are some effective numerical approaches for re-initialization, such as the fast marching method [44] and
the fast sweeping algorithm [55]. LSMs can easily handle certain types of shape and topological changes, such as merging,
splitting and developing sharp corners. The methods can therefore be naturally used to solve optimal shape design and
topology optimization problems [3,46,57]. For more details about the LSMs and their wide applications, we refer to see
[9,11,13,19,35,36,45,50,51] and the references therein.

Motivated by the level set ideas in [37,27], Haber [22] minimized and maximized the first eigenvalue by using a reduced
Hessian sequential quadratic programming method combined with multilevel continuation techniques. Strang and Persson
[41] solved the eigenvalue problem (1) in an irregular domain using the finite element method on unstructured meshes gen-
erated by the LSM [40]. Then they used the gradient descent method of Osher and Santosa [37] to minimize the first and the
second eigenvalue. Their method can work with arbitrary domains and resolve the interface by the triangular mesh, but
remeshing is needed at each iteration. Recently, Brandman [7] used the LSM to compute the eigenvalues of an elliptic oper-
ator defined on a hypersurface, which is represented implicitly as the zero level set of a LSF.

In classical shape sensitivity analysis for shape optimization problems, shape derivatives that measure the sensitivity of
boundary or interface perturbations are derived to obtain the shape gradient of the objective functional. For detailed theo-
retical analysis and applications of shape sensitivity analysis, we refer to see [48] and the references therein. After calculation
of the shape gradient, gradient-type algorithms are used to decrease the objective functional and stop if the shape gradient
vanishes. But such methods tend to fall into local minima and are generally implemented under the Lagrangian framework
which requires remeshing at each iteration. The homogenization method [1] can overcome the two drawbacks, but it is
mainly restricted to linear elasticity and gives optimal shapes that are composite. Penalization methods are needed to pro-
ject the composite shape on a classical two-phase design.

The combination of LSMs with the shape sensitivity analysis framework has become a standard tool for solving a variety
of shape optimization and inverse problems in engineering [2,3,8,9,15,57,60]. Fast Newton-type shape optimization methods
were used for level set formulations in [24]. However, as pointed out in [2,3,10,20,23,56], the conventional LSM based on
shape sensitivity analysis cannot create new holes automatically during the evolution which may get stuck at shapes with
fewer holes than the optimal geometry. Therefore, the initial shape guess generally contains many holes. To eliminate this
weakness, topology derivatives were incorporated into shape derivatives based LSMs for inverse obstacle problems [10],
structure optimization [4] and shape optimization problems [20]. The topology derivative introduced firstly by Sokołowski
and _Zochowski [47] measures the influence of creating small holes centered at a certain point in the domain. Motivated by
the idea in [10], He et al. [23] combined shape derivatives with topological derivatives in LSMs to maximize band gaps and
presented an algorithm more efficient and flexible in topology changing than the original LSM based on the shape deriva-
tives. For optimizing spectral gaps of the drum, they improved the numerical results in [37].

As recent variants of the standard LSMs, piecewise constant level set methods (PCLSMs) were proposed by Tai et al.
[31,52] for image segmentation and elliptic inverse problems [53]. Similar ideas can be found in [21,30,33,49]. The system-
atic and general framework of the PCLSM was presented in [29]. Different from standard LSMs, the PCLSM can identify sub-
regions using one discontinuous piecewise constant level set function (PCLSF) which can only take piecewise constant values
at convergence. One has to employ N LSFs to represent up to 2N subregions in the LSM, while PCLSM can use one LSF to dis-
tinguish multiple regions. The LSM propagates the interface by defining speed only on the interface, which makes it generally
could not create small holes at the places far away from the interface. The PCLSM determines the interface by forcing the
value of the LSF at each mesh point to be one of the piecewise constant values. Therefore, solving shape and topology
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problems by the PCLSM can create holes during the evolution of the LSF without topological derivatives. One can therefore
develop more complicated shapes than the conventional LSM. Another merit is that one does not need to solve the
Hamilton–Jacobi equation any more and the periodic re-initialization process is eliminated. Furthermore, iterative
algorithms having little dependence on the initial guess can be designed. Recently, based on the PCLSM formulation, the aug-
mented Lagrangian method [6,34,54] was employed to solve the structural topology optimization problems [58] and optimal
shape design of multi-material piezoelectric actuators with in-plane motion [32].

In this paper, we devise algorithms for solving shape optimization problems under the piecewise constant level set frame-
work. By introducing a LSF, the original model problem is formulated as an optimization problem with two constraints. The
first constraint is the original area constraint and the second one is added to force the LSF to become a PCLSF. By the aug-
mented Lagrangian and Lagrange multiplier techniques for constrained optimization problems, we propose three types of
variational algorithms. The first one is a Uzawa-type algorithm based on the augmented Lagrangian method for the two con-
straints. Uzawa-type algorithms under the piecewise constant level set frame have proven to be effective for shape and
topology optimization [32,58]. We apply such an algorithm to our model problem and illustrate its effectiveness in numer-
ical simulation. But we observe that the area constraint cannot be satisfied well even after a number of iterations. To over-
come this flaw, we then present the next two methods, one of which is a hybrid algorithm by coupling the Lagrange
multiplier technique for the area constraint with the augmented Lagrangian method for the other constraint. The last algo-
rithm without penalty parameters suffers from less severe restriction on the time step size compared with the first two algo-
rithms. In this algorithm, we employ the same method as the second algorithm in dealing with the area constraint. But we
use a projection Lagrangian method similar as in [30] to construct an iterative scheme for the second Lagrange multiplier. An
acceleration technique is given to speed up and improve the algorithm.

The rest of the paper is organized as follows. In Section 2, we present the basic formulations of the PCLSM. In Section 3, the
PCLSM is applied to the eigenvalue shape design problem. Based on the augmented Lagrangian method and the Lagrange
multiplier approach, we present three algorithms. Numerical results for the model problem are presented in Section 4. Fi-
nally, we conclude the paper in the last section and outline our future work.

2. Piecewise constant level set method

Assume that the domain X is partitioned into n subdomains fXign
i¼1 such that
X ¼
[n
i¼1

Xi [ C; ð5Þ
where C is the union of the boundaries of the subregions. In order to identify the subregions, we define a n-phase PCLSF
/X # R as follows:
/ ¼ i in Xi; i ¼ 1;2; . . . ;n: ð6Þ
Then the characteristic functions of the subdomains are represented as
vi ¼
1
ai

Yn

j¼1;j–i

ð/� jÞ with ai ¼
Yn

k¼1;k–i

ði� kÞ: ð7Þ
By the properties of the characteristic functions, we can calculate the area inside Xi and the length of the boundary of Xi,
respectively, by
kXik ¼
Z

X
vidx and j@Xij ¼

Z
X
jrvijdx: ð8Þ
It should be pointed out that we avoid the non-differentiability of the Heaviside and Delta functions in the standard LSMs. It
is therefore not necessary to use the smoothed and regularized counterparts for them.

We denote
Hð/Þ ¼ ð/� 1Þð/� 2Þ . . . ð/� nÞ ¼
Yn

i¼1

ð/� iÞ: ð9Þ
Then (6) implies that
Hð/Þ ¼ 0 in X: ð10Þ
The piecewise constant constraint (10) guarantees that there is no vacuum and overlap between different subregions. Any
piecewise constant function qðxÞ with q ¼ qi in Xi can be expressed as
qðxÞ ¼
Xn

i¼1

qivið/Þ: ð11Þ
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Now we can apply the two-phase PCLSM formulation to our two-density model problem (3). Let X1 ¼ S and X2 ¼ X n S. Here
/ ¼ 1 and / ¼ 2 correspond to X1 and X2, respectively. Then kSk ¼

R
Xð2� /Þdx. The density q can be represented as
qð/Þ ¼ q1v1 þ q2v2 ¼ q1ð/� 1Þ þ q2ð2� /Þ: ð12Þ
Let Fð/Þ ¼ k1 or �k1 or km � kmþ1 for m ¼ 1;2;3;4. Then the generic eigenvalue problem (3) and (4) can be formulated as
min
/

Fð/Þ subject to Gð/Þ ¼ 0 and Hð/Þ ¼ 0; ð13Þ
where
Gð/Þ ¼
Z

X
ð2� /Þdx� K; ð14Þ

Hð/Þ ¼ ð/� 1Þð/� 2Þ: ð15Þ
We let for example Fð/Þ ¼ k1 to show how to calculate the gradient of Fð/Þ. Suppose that the first eigenpair ðu1; k1Þ solves (1),
i.e., it satisfies
� Du1 ¼ k1qu1 in X; ð16Þ
u1 ¼ 0 on @X: ð17Þ
Differentiating w.r.t. q in a direction v 2 C10 ðXÞ on both sides of (16) leads to
�D
@u1

@q
� v

� �
� k1q

@u1

@q
� v

� �
¼ qu1

@k1

@q
� v

� �
þ k1vu1: ð18Þ
Multiplying both sides by u1, integrating and using Green’s theorem, we have
Z
X

qu1
@k1

@q
� v

� �
þ k1vu1

� �
u1dx ¼

Z
X
�D

@u1

@q
� v

� �
� k1q

@u1

@q
� v

� �� �
u1 dx

¼
Z

X
ru1 � r

@u1

@q
� v

� �
� k1qu1

@u1

@q
� v

� �� �
dx

¼
Z

X
ð�Du1 � k1qu1Þ

@u1

@q
� v

� �
dx ¼ 0: ð19Þ
Thus, the directional derivative
@k1

@q
� v ¼ �

k1
R

X vu2
1dxR

X qu2
1dx

; ð20Þ
which implies that the Gâteaux differential
@k1

@q
¼ � k1u2

1R
X qu2

1dx
: ð21Þ
By the chain rule, we have
@k1

@/
¼ @k1

@q
@q
@/
¼ ðq2 � q1Þk1u2

1R
X½q1ð/� 1Þ þ q2ð2� /Þ�u2

1dx
: ð22Þ
3. Algorithms

For the constrained optimization problem (13), we need to transform it to an unconstrained one. Different treatments for
the two constraints lead to different formulations. Generally, there are three essential strategies: augmented Lagrangian
method, Lagrange multiplier method and penalty approach.

In this section, we will present three iterative algorithms: Uzawa-type algorithm, hybrid algorithm and projection
Lagrangian algorithm. They all rely on gradient descent flows by introducing an artificial time variable t. In the following,
the upperscript k denotes the kth iteration.

3.1. Augmented Lagrangian algorithm

The augmented Lagrangian method has been studied well in [6,34] and applied widely for various problems (see e.g.
[13,14,26,54]). Recently, this classic method was used successfully under the piecewise constant level set framework for
solving shape and topology related optimization problems [28–32,58].
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First, we use the augmented Lagrangian method to convert the problem (13) to an unconstrained one
min
/

max
l1 ;l2
Lð/; l1; l2Þ ¼ Fð/Þ þ l1Gð/Þ þ 1

2l1
G2ð/Þ þ

Z
X

l2Hð/Þdxþ 1
2l2

Z
X

H2ð/Þdx; ð23Þ
where l1 2 R and l2 2 L2ðXÞ are Lagrange multipliers and l1 and l2 > 0 are penalty parameters. A minimizer of Fð/Þ corre-
sponds to a saddle point of the augmented Lagrangian functional L. The system of necessary conditions for a saddle point of
L is
@L
@/
¼ 0;

@L
@l1
¼ 0 and

@L
@l2
¼ 0; ð24Þ
where
@L
@/
¼ @F
@/
þ l1

@G
@/
þ 1

l1
G
@G
@/
þ l2

@H
@/
þ 1

l2
H
@H
@/

; ð25Þ

@L
@l1
¼ Gð/Þ ¼

Z
X
ð2� /Þdx� K; ð26Þ

@L
@l2
¼ Hð/Þ ¼ ð/� 1Þð/� 2Þ: ð27Þ
More precisely, for (25), we have
@L
@/
¼ @k1

@q
@q
@/
þ l1

@G
@/
þ 1

l1
G
@G
@/
þ l2

@H
@/
þ 1

l2
H
@H
@/

¼ ðq2 � q1Þk1u2
1R

X½q1ð/� 1Þ þ q2ð2� /Þ�u2
1dx
� l1 �

1
l1

Z
X
ð2� /Þdx� K

� �
þ l2ð2/� 3Þ þ 1

l2
ð/� 1Þð/� 2Þð2/� 3Þ: ð28Þ
We will update /; l1 and l2 alternatively. To minimize L w.r.t. /, we should introduce an artificial time variable t and solve
the PDE
@/
@t ¼ � @L

@/ in X� Rþ;

/ðx;0Þ ¼ /0ðxÞ in X

(
ð29Þ
to the steady state @/=@t ¼ 0, which implies that @L=@/ ¼ 0. We discretize (29) by a forward Euler scheme
/kþ1 ¼ /k � Dtk @L
@/
ð/k; lk1; l

k
2Þ; ð30Þ
where Dtk is the time step. The updating scheme (30) for / is essentially the gradient descent method for minimization of L
w.r.t. /. We can find the optimal Dtk by the Armijo–Goldstein search method or the Wolfe–Powell rule in each iteration.
Compared with setting a small fixed time step by experience, a line search based gradient descent method can reduce the
number of the whole iterations. But the computational effort at each iterate will increase. Alternatively, considering the Cou-
rant–Friedrichs–Lewy (CFL) condition for stability, we may set
Dtk ¼ rh=max
x2X

@L
@/

/kðxÞ; lk
1; l

k
2

� �				 				; ð31Þ
where h is the mesh size and the positive constant r can be chosen by the trial and error method. This way of setting the time
step for gradient evolution was also used in [10].

The Lagrange multipliers can be updated by the Uzawa-type scheme [29,31,32,58]:
lkþ1
1 ¼ lk

1 þ
1
lk

1

Z
X

2� /kþ1
� �

dx� K
� �

; ð32Þ

lkþ1
2 ¼ lk

2 þ
1
lk

2

ð/kþ1 � 1Þð/kþ1 � 2Þ: ð33Þ
For the augmented Lagrangian method, due to the Lagrange multipliers, the constraints can be satisfied even if we use fixed
penalization parameters during the iteration [30]. In practice, however, better convergence can be obtained if we decrease
gradually the values of the penalization parameters. We set
lkþ1
i ¼ hilk

i ; hi 2 ð0;1Þ; i ¼ 1;2; ð34Þ
where the decreasing factors h1 and h2 are constants required to be chosen properly.
Now we are ready to present the following Uzawa-type algorithm to obtain a saddle point of (23).

Algorithm 1. Augmented Lagrangian algorithm

Initialize /0; l0
1; l0

2; l0
1 and l0

2. For k ¼ 0;1;2; . . .,
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Step 1. Use (12) to calculate qk ¼ q1ð/
k � 1Þ þ q2ð2� /kÞ. Solve (16) and (17) with q replaced by qk and obtain ðkk

1; uk
1Þ.

Step 2. Set Dtk by (31) and use the scheme (30) to update the LSF.
Step 3. Update the Lagrange multipliers and penalty parameters by (32)–(34).
Step 4. If not converged: Set k ¼ kþ 1 and go to step 1.

The iterative procedure can be terminated when it satisfies

@L
@/

/kþ1; lkþ1
1 ; lkþ1

2

� �



 




L2ðXÞ
6 g

@L
@/
ð/k; lk

1; l
k
2Þ





 




L2ðXÞ

; g 2 ð0;1Þ ð35Þ
or reaches some prescribed iteration step.

Remark 1. The time step Dtk set by (31) is influenced by l1 and l2. A small lk
1 or lk

2 leads to a small Dtk. Implicit or semi-
implicit schemes can be applied to make larger time steps in solving the PDE (30), but it is not the focus of this paper.
Remark 2. Besides the augmented Lagrangian method, the piecewise constant constraint can be treated by the penalty
approach. The penalty method is simple and behaves more stable, but it is hard to satisfy the constraint exactly unless
the penalty parameter l2 is set to be small enough. However, the small value of the penalty parameter may cause instability.
With the augmented Lagrangian method for this constraint, there is no need to set the penalty parameter very small. Fur-
thermore, the effective Uzawa algorithm can be applied under the augmented Lagrangian frame.
Remark 3. The manner of setting the penalization parameters l1 and l2 and has a great impact on the convergence process
and the topology of the computed optimal shape. We can set them to be constant during the iterations. For better conver-
gence behavior, however, we choose large values for l0

1 and l0
2 at the beginning and decrease them gradually as (34) or we

can start to update them after some steps. If l0
1 and l0

2 are too small, the minimization focuses on the penalization of vio-
lations of the constraints. Then / may converge to 1 and 2 before the algorithm can determine the optimal topology. It is
therefore very likely to get stuck at local minima. On the other hand, if l1 and l2 are too large, penalization on the con-
straints is not enough and the iteration is not stable. The value of / can deviate from 1 and 2 greatly.
3.2. Hybrid algorithm

By the Uzawa Algorithm, the area constraint can be satisfied approximately after rather many iterations. To satisfy the
constraint more stably and accurately, we use the Lagrange multiplier method to treat this constraint. The optimal Lagrange
multiplier is obtained at each iteration by solving a one-dimensional optimization problem. By mixing the Lagrange multi-
plier method for the area constraint and the augmented Lagrangian method for the piecewise constant constraint, we devise
a more effective and accurate hybrid algorithm than Algorithm 1 for the model problem.

We omit the first penalization term in (23) and obtain a hybrid Lagrangian functional
bLð/; l1; l2Þ ¼ Fð/Þ þ l1Gð/Þ þ
Z

X
l2Hð/Þdxþ 1

2l2

Z
X

H2ð/Þdx: ð36Þ
At a saddle point of bL, we have
@ bL
@/
¼ @F
@/
þ l1

@G
@/
þ l2

@H
@/
þ 1

l2
H
@H
@/

¼ ðq2 � q1Þk1u2
1R

X½q1ð/� 1Þ þ q2ð2� /Þ�u2
1dx
� l1 þ l2ð2/� 3Þ þ 1

l2
ð/� 1Þð/� 2Þð2/� 3Þ ¼ 0; ð37Þ

@ bL
@l1
¼ @L
@l1
¼ 0;

@ bL
@l2
¼ @L
@l2
¼ 0: ð38Þ
Osher and Santosa [37] calculated l1 from the linearized equation of constraint Gð/Þ ¼ 0. Then they used Newton’s method to
update l1 when an iteration has violated the area constraint by a specified tolerance. This approach can keep the area of S
conservative every several steps. Here we apply their projection method and differentiate the constraint equation w.r.t. /
in the direction d/:
@G
@/

; d/

� �
¼ 0; ð39Þ
where d/ is a variation in / and h; i denotes the L2 inner product. Choose d/ ¼ @/=@t and we have
@G
@/

;
@/
@t

� �
¼ @G

@/
;� @

bL
@/

* +
¼
Z

X

@ bL
@/

dx ¼ 0: ð40Þ
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Thus, from (37) and (40), we obtain
l1 ¼
1
kXk

Z
X

ðq2 � q1Þk1u2
1R

X½q1ð/� 1Þ þ q2ð2� /Þ�u2
1dx
þ l2ð2/� 3Þ þ 1

l2
ð/� 1Þð/� 2Þð2/� 3Þ

( )
dx,Nð/; l2Þ: ð41Þ
If an iteration has violated the area constraint too far away from the constraint set, we solve for l1 via Newton’s method in
(39), i.e., update l1 by
l1  l1 �
@Gð/þ d/ðx; l1; l2ÞÞ

@l1

� ��1

Gð/þ d/ðx; l1; l2ÞÞ ð42Þ
for a few steps.
Alternatively, we adopt another way to seek the optimal l1 by
lkþ1
1  arg min

l1
jGð/̂kþ1Þj2; ð43Þ
where
/̂kþ1 ¼ /k � Dtk @
bL
@/
ð/k; l1; l

k
2Þ: ð44Þ
For the updating of /; l2 and l2, we follow the similar method as in the above subsection. We only need to replace @L=@/ by
@ bL=@/ in (29)–(31). More precisely,
/kþ1 ¼ /k � Dtk @
bL
@/
ð/k; lkþ1

1 ; lk
2Þ with Dtk ¼ rh=max

x2X

@ bL
@/

/kðxÞ; lkþ1
1 ; lk

2

� �					
					: ð45Þ
Algorithm 2. Hybrid algorithm

Initialize /0; l0
1; l

0
2 and l0

2. For k ¼ 0;1;2; . . .,
Step 1. Use (12) to calculate qk ¼ q1ð/

k � 1Þ þ q2ð2� /kÞ. Solve (16) and (17) with q replaced by qk and obtain ðkk
1;u

k
1Þ.

Step 2. Compute the Lagrange multiplier lkþ1
1 ¼ Nð/; lk

2Þ via (41).
When jGð/̂kþ1tÞj > e for a prescribed tolerance e, we solve for lkþ1

1 by (43).
Step 3. Use (45) to update /k.
Step 4. Update l2 and l2 by (33) and (34), respectively.
Step 5. If not converged: Set k ¼ kþ 1 and go to step 1.

There is rarely theoretical convergence analysis for such a hybrid scheme in the literature and monographs on con-
strained optimization. However, we shall illustrate its effectiveness and robustness in numerical experiments.

Remark 4. To put an iteration back onto the feasible set, the manner for updating the first Lagrange multiplier in Algorithm
2 is different from Newton’s method applied in [37]. We seek the optimal Lagrange multiplier by solving a one-dimensional
optimization problem, while the algorithm in [37] updated it through solving a nonlinear equation for l1. Although they are
exactly the same if we use the Newton method in (43), we can apply other optimization methods, such as the line search
based steepest descent approach or Quasi-Newton method, to achieve this.
3.3. Projection Lagrangian algorithm

In this section, we propose another so-called projection Lagrangian method based on the general Lagrange multiplier
method for both constraints. One advantage of this algorithm compared with Algorithms 1 and 2 is that no penalty param-
eter is used. With no need to adjust penalty parameters and their decreasing rates, Algorithm 3 is more robust than the two
other algorithms. Another virtue worth of mention is that the restrictions on the time step size in Algorithms 1 and 2 are
relaxed as shown in numerical simulation. This virtue of Algorithm 3 makes it determine the optimal topology earlier than
the first two algorithms.

The projection Lagrangian algorithm [18] was applied to image segmentation under a framework of the binary level
set method in [30]. Motivated by this idea, here we employ it under the piecewise constant level set frame to deal with
the piecewise constant constraint. For the area constraint, we again use the projected Lagrange multiplier method in
Algorithm 2.

Omitting the penalty terms in (23), we define the Lagrangian functional for (13) as
Lð/; l1; l2Þ ¼ Fð/Þ þ l1Gð/Þ þ
Z

X
l2Hð/Þdx: ð46Þ
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Similarly, the saddle point of L requires
@L
@/
¼ @k1

@q
@q
@/
þ l1

@G
@/
þ l2

@H
@/

ð47Þ

¼ ðq2 � q1Þk1u2
1R

X½q1ð/� 1Þ þ q2ð2� /Þ�u2
1dx
� l1 þ l2ð2/� 3Þ ¼ 0; ð48Þ

@L
@l1
¼ Gð/Þ ¼ 0;

@L
@l2
¼ Hð/Þ ¼ 0: ð49Þ
We use the same technique as (41) and (43) to find the optimal Lagrange multiplier l1 at each iteration. We have
l1 ¼
1
kXk

Z
X

ðq2 � q1Þk1u2
1R

X½q1ð/� 1Þ þ q2ð2� /Þ�u2
1dx
þ l2ð2/� 3Þ

( )
dx,Cð/; l2Þ: ð50Þ
If the area constraint cannot be satisfied well with l1 computed by (50), we solve for l1 by
lkþ1
1  arg min

l1
G ~/kþ1
� �			 			2; ð51Þ
where
~/kþ1 ¼ /k � Dtk @L
@/
ð/k; l1; l

k
2Þ: ð52Þ
We use the similar gradient descent method as (30) to update / by
/kþ1 ¼ /k � Dtk @L
@/
ð/k; lkþ1

1 ; lk2Þ; ð53Þ
where Dtk ¼ rh=maxx2Xj @L
@/ /kðxÞ; lkþ1

1 ; lk
2

� �
j.

Now we discuss how to construct an updating scheme for l2 by (48). Multiplying this equation by 2/� 3 and using the
constraint ð/� 1Þð/� 2Þ ¼ 0 in (49), we get the explicit expression of l2
l2 ¼ ð2/� 3Þ ðq1 � q2Þk1u2
1R

X½q1ð/� 1Þ þ q2ð2� /Þ�u2
1dx
þ l1

( )
,Wð/; l1Þ:

ð54Þ
The updating scheme (54) is in essence a projection Lagrangian algorithm of Uzawa type [18,30].

Algorithm 3. Projection Lagrangian algorithm

Initialize /0; l0
1 and l0

2. For k ¼ 0;1;2; . . .,
Step 1. Use (12) to compute qk ¼ q1ð2� /kÞ þ q2ð/

k � 1Þ. Solve (16) and (17) with q replaced by qk and obtain ðkk
1; u

k
1Þ.

Step 2. Update l1 by lkþ1
1 ¼ Cð/k; lk

2Þ.
When jGð/̂kþ1Þj > e, use (51) to get lkþ1

1 .
Step 3. Update the LSF by (53).
Step 4. Update l2 by lkþ1

2 ¼ Wð/kþ1; lkþ1
1 Þ.

Step 5. If not converged: Set k ¼ kþ 1 and go to step 1.
Remark 5. Based on the binary level set framework, the projection Lagrangian algorithm proposed in [30] is similar to our
Algorithm 3 in updating the Lagrange multiplier l2. The main difference is that we have to treat the area constraint in our problem.

4. Numerical experiments

In this part, we will test the proposed algorithms on the eigenvalue shape optimization problem. We solve all examples
on a domain X ¼ ½0;1� � ½0;1:5�with the mesh size h ¼ 1=40 and use the five-point difference scheme to discretize the Lapla-
cian operator. All numerical experiments are performed in MATLAB on a PC with Intel Core 2 Duo 2.33 GHz processor and
2 GB memory. One iteration usually costs 0.07–0.08 s and every numerical example takes less than 1 min. Our algorithms are
more efficient than LSMs mainly because we do not need to implement the periodical re-initialization process. The subrou-
tine eigs is called for solving the generalized eigenvalue problem at each iteration. We use contourf to plot the two-den-
sity distribution. In all the following figures for the density distribution, white corresponds to q2 ¼ 2.

The constraint Hð/Þ ¼ 0 can be replaced by Hað/Þ ¼ 0 for a > 1. As described in [58], the smaller the a value, the faster the
convergence speed. In our computations, the case a ¼ 1 is used. Let kHð/Þk2 denote the computed L2 norm of Hð/Þ. This
quantity measures the constraint violations.



5070 S. Zhu et al. / Journal of Computational Physics 229 (2010) 5062–5089
The area constraint is equivalent to a mass constraint if we calculate the mass of the drum by
M :¼ q1ðkXk � kSkÞ þ q2kSk ¼ q1kXk þ ðq2 � q1Þ
Z

X
ð2� /Þdx: ð55Þ
We set K ¼ kXk=2 ¼ 0:75, i.e., the mass of the drum is 2.25. We can use M to numerically measure if the geometry constraint
is satisfied during the iteration. The mass quantity M in our first algorithm usually oscillates around 2.25 in the first few iter-
ations. After convergence, the mass constraint satisfaction is not very satisfactory even if an initial LSF satisfying exactly this
constraint is chosen. Algorithms 2 and 3 are numerically mass conservative, namely, the computed quantity M can approx-
imate to 2.25 very accurately at each iteration. The final mass value is rather close to 2.25 even starting from a poor initial
guess. However, the density represented by (12) is composite when / has not converged to 1 and 2. Therefore, the following
figures for the evolution of the two-phase density plotted by controuf visually show that the constraint is not satisfied until
convergence. The tolerance e is set to be 10�4.

4.1. Uzawa-type algorithm

Let us first test the performance of the Algorithm 1 for our shape design problem. The algorithm starts with
l0

1 ¼ 10; l0
2 ¼ 50; l0

1 ¼ 0; l0
2 ¼ 0 and /0 ¼ 1:5. We choose h1 ¼ h2 ¼ 0:95 and r ¼ 0:5. Consider the two cases: min k1 and

max k1 as illustrations for effectiveness and limitations of the algorithm. Evolutions of the LSF and densities for minimizing
k1 are shown in Fig. 1. See Fig. 2 for the evolution of densities for maximizing k1. In Fig. 3, we show the convergence history of
k1 for the two experiments. After 400 iterations, k1 ¼ 7:3218 and 13.2742, respectively. Compared the two values respec-
tively with another two optimal eigenvalues 7.37 and 13.45 obtained using LSM [37], our first value is slightly better, while
the second one is a little worse.

For both examples, Fig. 4 demonstrates that the algorithm oscillates first and begins to satisfy the mass constraint approx-
imately after about 200 iterations. After 400 iterations, the error M � 2:25 is about �9:30� 10�3 and 6:27� 10�3, respec-
tively. The two values seem to be tolerable, but the error can hardly be reduced further by Algorithm 1. In order to
improve both the accuracy and stability of the mass constraint satisfaction, we use the Lagrange multiplier method in the
next two algorithms to deal with this constraint.

4.2. Hybrid algorithm

Comparing with Algorithm 1, the hybrid algorithm requires to solve a one-dimensional optimization problem when the
absolute error between the computed mass and 2.25 is larger than the tolerance e. However, this additional computational
effort is nearly negligible from numerical experience. In this part, we set r ¼ 0:4; l0

2 ¼ 100 and h2 ¼ 0:90 for the following
numerical examples.

4.2.1. Case 1: min k1

To illustrate the hybrid Algorithm 2 is almost independent of the initial guess, we display evolutions of the LSF and/or
densities from four different initial density distributions, respectively, in Figs. 5–8. In Fig. 6, we obtained satisfactory results
even if we choose a random initial guess. Moreover, our algorithm can deal with the area constraint accurately. In Fig. 9, we
demonstrate numerically mass preserving of the algorithm although this cannot be seen from the density distributions in
Figs. 5–8. The convergence history of M; kHð/Þk2 and k1 for the four initial designs are presented in Figs. 9–11, respectively.
From the curves in these three figures, we can see the algorithm is stable and robust. Table 1 demonstrates minor differences
among the results of the four evolutions. After 400 iterations, the constraint Hð/Þ � 0:05, i.e., / converges approximately to 1
or 2 at every grid point. The final value of k1 approximates to 7.3 for each design.

4.2.2. Case 2: max k1

Fig. 12 shows evolutions of the LSF and the densities from the same initial design as in Fig. 5(a). In Fig. 13, the value of k1

increases monotonically after about 50 iterations. As shown in Fig. 14, there are only some minor oscillations for M in the
first 150 iterations. The initial value for kHð/Þk2 is zero. The value of kHð/Þk2 increases first but deceases after about 100
iterations.

4.2.3. Case 3: maxðk2 � k1Þ
This example demonstrates the process of maximizing the gap between k2 and k1. Fig. 15 shows evolutions of the LSF and

the densities. See Fig. 16 for corresponding convergence history of k1; k2 and k2 � k1. The quantities M and kHð/Þk2 are plot-
ted in Fig. 17.

In Table 2, the comparison between Algorithm 2 and LSM [37] shows that our algorithm leads to a smaller optimum than
LSM for Case 1, while the LSM performs better for Case 2 and Case 3.

Remark 6. The algorithm can finally develop sharp discontinuities at the interface due to the penalization effect on
the piecewise constant constraint. But the converged / deviates slightly from 1 and 2 as shown in the evolution figures
above.
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Fig. 2. Maximization of k1 by Algorithm 1: evolution of the densities from initial design /0 ¼ 1:5.
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Fig. 1. Minimization of k1 by Algorithm 1: evolutions of the LSF and densities from initial design /0 ¼ 1:5.
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4.3. Projection Lagrangian algorithm

As will shown below, the CFL stability condition in this algorithm allows a relatively larger time step than that in Algo-
rithms 1 and 2 from numerical experience.

The LSF / in the region far from the interface converges quickly to 1 and 2. But it takes rather many iterations for / in the
region near the interface to reach them, i.e., form the discontinuity. To speed up the projection Lagrangian method, we intro-
duce the function
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Fig. 3. Convergence history of k1 by Algorithm 1.
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�/ � sgnð/� 1:5Þ ¼
/�1:5
j/�1:5j if / – 1:5;

0 else

(
ð56Þ
and replace / by the function /̂ ¼ 1
2 /þ 1:5. Inserting /̂ into Eq. (12), we obtain
qð/Þ ¼
q1

/�1:5
2j/�1:5j þ 0:5
� �

þ q2 0:5� /�1:5
2j/�1:5j

� �
if / – 1:5;

1
2 ðq1 þ q2Þ else:

8<: ð57Þ
By the chain 